Abstract:
Dual membrane hybrid systems generally produce reclaimed water for non-potable uses by blending microfiltered biologically treated sewage effluent (BTSE) and reverse osmosis (RO) permeate. This reclaimed water is found to contain a significant amount of micro- pollutants, which possibly cause toxicity effects to aquatic organisms and plants when exposed to it. Therefore, removing such pollutants from the reclaimed water before reaching the community is highly emphasized nowadays. The currently used treatment of the RO treatment of microfiltered BTSE is energy intensive and not cost effective. This paper focuses on less costly and efficient membrane-based hybrid treatment systems such as the microfiltration-adsorption (MF-GAC) hybrid system, Nano filter (NF) and RO in the removal of micro-pollutants from the microfiltered BTSE. Both the MF-GAC hybrid system and NF (with NTR 729HF membrane) removed 70 to 95% of micropollutants from microfiltered BTSE. The removal depends on the hydrophobicity, charge, and size of the micropollutants. RO was excellent in removing more than 90% of pollutants, while MF was inefficient, as the latter primarily depends on the size exclusion mechanism. Based on the finding, it is suggested to treat only a portion of microfiltered BTSE through the MF-GAC or NF membrane before blending with RO permeate to enhance the removal of micro-pollutants from reclaimed water. The development of sustainable hybrid systems for the removal of all micropollutants of different chemical and physical properties is the key for the water reclamation.