A new stochastic restricted two-parameter estimator in multiple linear regression model

Show simple item record

dc.contributor.author Arumairajan, S.
dc.contributor.author Kayathiri, S.
dc.date.accessioned 2022-09-08T06:36:41Z
dc.date.available 2022-09-08T06:36:41Z
dc.date.issued 2022-08-31
dc.identifier.issn 2950-7154 (print)
dc.identifier.issn 2950-7146 (Online)
dc.identifier.uri http://drr.vau.ac.lk/handle/123456789/528
dc.description.abstract In this paper, we proposed a biased estimator, a new stochastic restricted two-parameter estimator (NSRTPE), for the multiple linear regression model to tackle the multicollinearity problem when the stochastic restrictions are available. Necessary and sufficient conditions for the superiority of the proposed estimator over the ordinary least square estimator (OLSE), ridge estimator (RE), Liu estimator (LE), almost unbiased Liu estimator (AULE), modified new two-parameter estimator (MNTPE), mixed estimator (ME), stochastic restricted Liu estimator (SRLE) were derived in the mean square error matrix (MSEM) criterion. Finally, we showed the superiority of the estimator proposed using a simulation study and a real-world example in the scalar mean square error (SMSE) criterion en_US
dc.language.iso en en_US
dc.publisher Faculty of Applied Science, University of Vavuniya, Sri Lanka en_US
dc.subject Multiple linear regression en_US
dc.subject Multicollinearity en_US
dc.subject Stochastic restriction en_US
dc.subject Two-parameter estimator en_US
dc.subject Mean square error matrix en_US
dc.title A new stochastic restricted two-parameter estimator in multiple linear regression model en_US
dc.type Article en_US
dc.identifier.journal Vavuniya Journal of Science en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search


Browse

My Account