dc.contributor.author | Arumairajan, S. | |
dc.contributor.author | Kayathiri, S. | |
dc.date.accessioned | 2022-09-08T06:36:41Z | |
dc.date.available | 2022-09-08T06:36:41Z | |
dc.date.issued | 2022-08-31 | |
dc.identifier.issn | 2950-7154 (print) | |
dc.identifier.issn | 2950-7146 (Online) | |
dc.identifier.uri | http://drr.vau.ac.lk/handle/123456789/528 | |
dc.description.abstract | In this paper, we proposed a biased estimator, a new stochastic restricted two-parameter estimator (NSRTPE), for the multiple linear regression model to tackle the multicollinearity problem when the stochastic restrictions are available. Necessary and sufficient conditions for the superiority of the proposed estimator over the ordinary least square estimator (OLSE), ridge estimator (RE), Liu estimator (LE), almost unbiased Liu estimator (AULE), modified new two-parameter estimator (MNTPE), mixed estimator (ME), stochastic restricted Liu estimator (SRLE) were derived in the mean square error matrix (MSEM) criterion. Finally, we showed the superiority of the estimator proposed using a simulation study and a real-world example in the scalar mean square error (SMSE) criterion | en_US |
dc.language.iso | en | en_US |
dc.publisher | Faculty of Applied Science, University of Vavuniya, Sri Lanka | en_US |
dc.subject | Multiple linear regression | en_US |
dc.subject | Multicollinearity | en_US |
dc.subject | Stochastic restriction | en_US |
dc.subject | Two-parameter estimator | en_US |
dc.subject | Mean square error matrix | en_US |
dc.title | A new stochastic restricted two-parameter estimator in multiple linear regression model | en_US |
dc.type | Article | en_US |
dc.identifier.journal | Vavuniya Journal of Science | en_US |