Optimal estimators in misspecified linear regression model with an application to real-world data

Show simple item record

dc.contributor.author Kayanan, M.
dc.contributor.author Wijekoon, P.
dc.date.accessioned 2022-05-11T09:34:08Z
dc.date.available 2022-05-11T09:34:08Z
dc.date.issued 15-04-19
dc.identifier.uri http://drr.vau.ac.lk/handle/123456789/88
dc.description.abstract In this article, we propose the sample information optimal estimator and the stochastic restricted optimal estimator for misspecified linear regression model when multicollinearity exists among explanatory variables. Further, we obtain the superiority conditions of proposed estimators over some other existing estimators in the mean square error matrix criterion in a standard form which can apply to all estimators considered in this study. Finally, a real-world example and a Monte Carlo simulation study are presented for the proposed estimators to illustrate the theoretical results en_US
dc.language.iso en en_US
dc.publisher Taylor & Francis en_US
dc.subject Sample information optimal estimator en_US
dc.subject Stochastic restricted optimal estimator en_US
dc.subject Mean square error matrix en_US
dc.title Optimal estimators in misspecified linear regression model with an application to real-world data en_US
dc.type Article en_US
dc.identifier.doi https://doi.org/10.1080/01621459.2018.1536863 en_US
dc.identifier.journal Communications in Statistics: Case Studies, Data analysis and applications en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search


Browse

My Account