Efficient Switch Architectures for Pre-configured Backup Protection with Sharing in Elastic Optical Networks

Show simple item record

dc.contributor.author Suthaharan, S
dc.contributor.author Ratnam, K
dc.contributor.author Ragel, R.G
dc.date.accessioned 2019-11-25T07:41:17Z
dc.date.accessioned 2022-03-11T10:28:45Z
dc.date.available 2019-11-25T07:41:17Z
dc.date.available 2022-03-11T10:28:45Z
dc.date.issued 2014
dc.identifier.issn 978-1-4799-4598-6
dc.identifier.uri http://drr.vau.ac.lk/handle/123456789/1297
dc.description.abstract In this paper, we address the problem of providing survivability in elastic optical networks (EONs). EONs use fine granular frequency slots or flexible grids, when compared to the conventional fixed grid networks and therefore utilize the frequency spectrum efficiently. For providing survivability in EONs, we consider a recently proposed survivability method for conventional fixed grid networks, known as pre-configured backup protection with sharing (PBPS), because of its benefits over the traditional survivability approaches such as dedicated and shared protection. In PBPS, backup paths can be pre-configured and at the same time they can share resources. Therefore, both short recovery time and efficient resource usage can be achieved. We find that the existing switch architectures do not support both PBPS and EONs. Specifically, we identify and illustrate that, if a switch architecture is not carefully designed, several key problems/issues might arise in certain scenarios. Such problems include unnecessary resource consumption, inability of using existing free resources, and incapability of sharing backup paths. These problems appear when PBPS is adopted in EONs and they do not arise in fixed grid networks. In this paper, we propose new switch architectures which support both PBPS and EONs. Particularly, we illustrate that, our switch architectures avoid the specific problems/issues mentioned above. Therefore, our switch architectures support using resources more efficiently and reducing blocking of requests. en_US
dc.language.iso en_US en_US
dc.publisher IEEE 7th International Conference on Information and Automation for Sustainability (ICIAfS'14) en_US
dc.subject elastic optical networks en_US
dc.subject optical switch architectures en_US
dc.subject survivability en_US
dc.title Efficient Switch Architectures for Pre-configured Backup Protection with Sharing in Elastic Optical Networks en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search


Browse

My Account