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Abstract— Quality of underwater images are reduced with 

the depth since light is absorbed and scattered by the suspended 

particles in water.  Although several optical model-based and 

model-free underwater image enhancement methods have been 

developed in the past, their performances are considerably poor 

since they fail to consider the scene-specific cues and depth 

information. In this study, a novel enhancement approach is 

proposed by combining optical model-based and model-free 

algorithms. In the model-based technique, a tentative depth map 

estimation technique is proposed and then used to compute 

more accurate red channel prior, background light, and 

transmission. White balancing and Gamma correction are used 

in the model-free technique. Outputs of both techniques have 

been combined by a fusion strategy to recover the details and 

colour. Experimental results demonstrate the proposed 

enhancement method outperforms state-of-the-art approaches 

on UIEB, OceanDark, and U45 benchmark datasets.    
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I. INTRODUCTION 

Underwater images are often in poor quality since they 
have a reduced contrast, colour deviations, low brightness, and 
a foggy appearance. Therefore, extracting useful information 
from underwater images is a challenging task for many 
application areas such as marine species identification [1], 
underwater archaeology[2], control of submarines and other 
vehicles[3], and inspection of underwater infrastructures and 
cables[4]. Computer vision based enhancement techniques are 
used to restore the colour and details of underwater images 
without depending on expensive hardware based 
enhancement equipment.  

Visibility of underwater images is poor since the light 
coming from underwater objects are scattered and absorbed 
by the suspended particles in water which causes low contrast 
images with a foggy appearance. In addition, since the red 
light has a longer wavelength than blue and green lights, it is 
absorbed more quickly than others. Due to this, green and blue 
lights reach further depths in underwater and hence produce a 
bluish or greenish effect in underwater images. Further, 
attenuation of underwater lights depends on the distance it 
travels and causes colour distortions in images. Since all these 
factors are depending on the depth of a scene from the surface 
of water, depth map estimation plays a major role in 
underwater image enhancement. However, depth map 
estimation of a single underwater image is not an easy task 
since a single image does not provide any depth information 
itself. 

Over the past few years, many computer vision based 
approaches[5-10] have been developed to restore details in 
underwater images. These methods can be grouped as model-
free approaches and model-based approaches based on the 

techniques they have used. Model-free approaches use 
simplified image processing techniques without considering 
the physical properties of light in underwater. These 
approaches use a wide range of linear and nonlinear 
enhancement algorithms such as colour correction and 
balancing[11, 12], Gamma correction[12], and Retinex[13]. 
Although model-free approaches are fast and recover more 
natural colours, since they fail to consider the spectral 
properties of underwater and the relation between depth and 
image degradation, their recovering performances are 
considerably low.  

Model-based approaches analysis the atmospheric light 
propagation and transmission map in underwater and then use 
an atmospheric scattering model for image enhancement. 
Most of these approaches depend on prior knowledge and 
some observations to estimate the light attenuation and 
transmission map of underwater images. Based on the 
similarity of fog removal approaches[14, 15], several model-
based techniques have been proposed such as Dark Channel 
Prior (DCP)[16-18], Red Channel Prior (RCP) [19], 
Blurriness Prior (BP) [20], and Underwater Dark Channel 
Prior (UDCP)[21, 22]. Model-based approaches are able to 
recover more details since they consider the light scattering 
physical information and then recover the image accordingly. 
However, model-based approaches are still struggling to find 
the accurate depth map from a single image. Therefore, in 
most situations, they recover the underwater images with 
unnatural colours. 

Recently, a few approaches[5, 23, 24] are following the 
fusion technique in underwater image enhancement. These 
approaches generate two or more enhanced images using 
different algorithms and then fused them together to get a 
better result. In addition, another set of approaches[25, 26] 
used end-to-end machine learning techniques in underwater 
image enhancement. Since these approaches use 
Convolutional Neural Networks (CNN) with a huge number 
of parameters, they need a massive quantity of training data. 
To manage the data deficiency, they generate and use the 
synthetic images in training. Although these approaches 
showed significant improvement in underwater image 
enhancement, they consume more computational resources 
and therefore are not fit for real-time image enhancement. 

Although model-free approaches produce more natural 
colours, their recovering performance is lower than model-
based approaches. On the other side, model-based methods are 
still struggling to approximate the depth map of a single 
underwater image. Therefore, a considerable performance gap 
is observed in underwater image enhancement. To reduce this 
performance gap, we propose a novel framework for 
underwater image enhancement. We combine model-based 
and model-free algorithms to achieve better image recovering 



performance. In the proposed model-based technique, scene-
specific depth map knowledge is obtained and then fed to 
measure the attenuation and transmission map. Then, a 
superpixel based segmentation technique is used to identify 
the equal depth regions in an underwater image. On the other 
side, white balancing and image sharpening algorithms are 
used in model-free technique. In the final stage of the 
proposed approach, both model-based and model-free 
techniques are fused to recover an underwater image with high 
contrast and natural colours. The performance of the proposed 
approach is measured on three well-known benchmark 
datasets and then compared with 14 model-based and model-
free approaches. The proposed approach demonstrated 
excellent recovering performance in all three benchmarks.  

II. BACKGROUND 

A. Underwater Image Formation Model 

Quality of images are reduced in underwater by the 
attenuation differences of red, green, and blue lights as they 
can travel in water up to 5, 25, and 35 meters depth, 
respectively. Further, as shown in Fig.1, suspended 
underwater particles divert the track of light, which comes 
from the object. In underwater, direct transmission and 
background scattering lights are used to capture an object. The 
direct transmission is the light energy which directly came 
from the captured object.  Background scatter is the light came 
from the object and then scattered by the suspended particles 
but still comes to the camera. These two components are used 
to form an image I as: 

I(x) =  𝐽𝑐(x) 𝑡𝑐(x) + 𝐴𝑐 (1-  𝑡𝑐(x)) , 𝑐 ∈ {𝑟, 𝑔, 𝑏}, (1) 

where x represents a particular pixel in the captured 
underwater image, and 𝐽𝑐(x) 𝑡𝑐(x) and 𝐴𝑐 (1-  𝑡𝑐(x)) are the 
direct transmission and background scattering components, 
respectively. Also, in this equation, 𝐽𝑐  is the non-degraded 
underwater image, 𝑡𝑐 is the transmission medium coefficient,  
𝐴𝑐 is the background light in underwater, and {𝑟, 𝑔, 𝑏} are the 
red, green, and blue lights. 

The transmission medium coefficient 𝑡𝑐  describes the 
amount of light that is not affected by scattering or absorption 
and it can be written as: 

  𝑡𝑐(x)  =   e−β𝑐d(x), (2) 

Where d(x) is the depth from the surface of the water and 
β𝑐  is the attenuation coefficient for colour c  . In this 
background, the model-based image enhancement approaches 
are objective to find the non-degraded image 𝐽 , from the 
captured image I.  

B. Red Channel Prior 

In this study, the Red Channel Prior (RCP) [19] is used as 
the baseline model-based algorithm and hence reviewed in 
this section. Since RCP is fast and efficient, many researchers 
used it as the baseline algorithm for underwater image 
enhancement.  

In underwater images, the red colour channel is absorbed 
more by water and hence loses intensity with depth, while the 
other two colours keep their intensities. Based on this fact, 

RCP algorithm calculates the red channel prior Jred  of an 
underwater image as: 

 Jred=  
Min

y∈Ω(x)
(𝑀𝑖𝑛(1 − Jr(y)), Min(J𝑔(𝑦), Min(J𝑏(𝑦) ), (3) 

where Ω (x) is a square shape local image patch centred at 

x. Based on the observation of many underwater images, Jred 
is low and tends to be zero in a non-degraded image J. This is 
called the Red Channel Prior. Depend on that observation, the 
transmission  𝑡𝑐 is obtained as: 

  𝑡𝑐(x)  =   1 −  
Min

y∈Ω(x)
 (

Min

c

𝐼c(y)

𝐴𝑐
), (4) 

RCP algorithm estimates the background light 𝐴𝑐  by 
calculating the average of brightest red channel pixels. Based 
on the calculations of  𝑡𝑐 and 𝐴𝑐, a non-degraded image 𝐽 will 
be obtained from the captured image I.  

The recovering performance of RCP and similar 
approaches are relying on the efficiency of red channel prior 
computation. These approaches use a fixed patch size (in 
Equation (3)) to compute the red channel and assume that the 
transmission is constant within a patch. We observed that the 
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enhancement performance is increased while the large patches 
are used in depth regions and small patches are used in less 
depth regions. Therefore, scene-specific patches should be 
used to increase the enhancement performance.  

III. METHODOLOGY 

The study objective to feed the depth map information to 
the red channel prior computation to improve the recovering 
capability of the model-based underwater enhancement 
approaches. In addition, this study focused on combining 
model-based and model-free techniques to obtain non-
degraded images with natural colours. As shown in the Fig.2, 
the proposed methodology has two separate branches for 
model-based and model-free techniques. In the early phase of 
the proposed model-based technique, a tentative depth map is 
estimated and then utilised to compute the scene-specific red 
channel prior and transmission. On the other side, white 
balancing, image sharpening, and gamma correction 
algorithms are used in the model-free branch. Outputs of both 
branches are combined with a fusion technique. In the 
following subsections, each step is explained in detail. 

A. Depth Map Extraction 

Single image depth map extraction is one of the 
challenging and well-known problems in computer vision and 
machine learning. Although machine learning based 
algorithms are robust to predict the depth map, they are not 
suitable for a faster underwater image enhancement since they 
consume more computing resources and take too much time. 
In this scenario, a simple and faster depth map extraction 
technique is used in this study.  

The proposed depth map extraction technique is built 
based on the observation that intensities of red colour channel 
pixel’s intensities are inversely proportional to the depth of the 
water. This correlation can be written as: 

  Ir(x) α  
1

d(x)
, I(x) = ( Ir(x) ,  Ig(x),  I𝑏(x)), (5) 

where d(x)  is the depth of the camera from the water 
surface and I is the captured image. As the initial step, a 3×3 
patch is used to find the local minimum of red channel 
intensity values (  Ir(x) ). Then  1 −  Ir(x)  is calculated to 
forecast the tentative depth map of the image since it is 
proportional to the depth. Finally, equal depth map regions are 
identified using a superpixel based image segmentation 
technique[27]. As shown in Fig.3, proposed depth map 
extraction technique identifies the similar depth regions based 
on the intensity values of red channel intensity values.  

B. Scene-Specific Red Channel Prior 

Underwater image enhancement performance of RCP and 
other similar works are mainly relying on the computation of 

red channel prior. As stated in Equation 3, these approaches 
use a fixed size patch to find a lower intensity pixel and then 
that information is used to measure the transmission (Equation 
4). However, based on our experiment, a large size of patch 
should be used in depth regions since probability for a lower 
intensity red channel pixel is low. Conversely, a small size of 
patch should be used in less depth regions since the probability 
for a lower intensity red channel pixel is high. Based on these 
findings, a scene-specific red channel prior computation is 
used in our method.  

The extracted depth map regions are used to select the 
patch sizes in the proposed scene-specific red channel prior. 
As an initial step, average intensity of  1 −  Ir(x) is computed 
for each similar depth region and then used to select the 
corresponding patch size. Since  1 −  Ir(x) is proportional to 
the depth, large patch size is allocated for high average 
intensity of  1 −  Ir(x) . These details are summarized in 
Table1. 

TABLE 1:  PATCH SIZE ASSIGNMENTS BASED ON THE AVERAGE INTENSITIES 

Average Intensity of (1 – Ir(x)) Patch Size (Ω) 

1 – Ir(x)   ≥ 230 15 × 15 

230 > 1 – Ir(x)   ≥ 120 11 × 11 

120 > 1 – Ir(x)    ≥ 80 9 × 9 

1 – Ir(x)   < 80 5 × 5 

After the patch size assignments, scene-specific red 

channel prior 𝐽𝑅1
𝑟𝑒𝑑 is calculated in a region 𝑅1 as follow:  

𝐽𝑅1
𝑟𝑒𝑑=  

Min

y∈Ω'(x)
(𝑀𝑖𝑛(1 − Jr(y)), Min(J𝑔(𝑦), Min(J𝑏(𝑦) ), (6) 

where Ω'(x)  is the patch size in region 𝑅1. Finally, the 
overall scene-specific red channel prior for an underwater 
image is calculated as: 

   JredS =  𝐽
𝑅1
𝑟𝑒𝑑 ∪ 𝐽

𝑅2
𝑟𝑒𝑑  .... ∪ 𝐽

𝑅𝑛
𝑟𝑒𝑑 , (7) 

where n is the amount of identified depth regions in the 

image and JredS
 is the scene-specific red channel prior. As 

shown in Fig.4, more accurate results are produced by the 
proposed scene-specific red channel prior algorithm than the 
red channel prior in previous approaches.  

C. Background Light Estimation 

Similar to RCP and follow-up approaches, background 
light 𝐴𝑐 , in an underwater image, is estimated by selecting the 
brightest pixel based on its scene-specific red channel prior.  

D. Adaptive Transmission Estimation 

Transmission ( 𝑡𝑐 ) is the portion of the light that came 
from the scene to the camera without any scattering effect. As 
stated in Equation 4, transmission is calculated in RCP and 
follow-up approaches. However, in that calculation, we have 

Fig. 3: Depth map extraction of an underwater image. (left) Intensity 
values of 1-Ir. (right) Extracted equal depth map regions. Identified 

regions are shown in red. 

(a) (b) (c) 

Fig. 4: Efficiency of the scene-specific red channel prior. (a) Input 
image. (b) Red channel prior in previous approaches. (c) Proposed 

scene-specific red channel prior.  



observed that unnatural colours are produced and the feeling 
of depth is lost while the entire scene-specific red channel 

prior (JredS) is subtracted from 1. To avoid this, in the proposed 

approach, a very small amount of JredS  is kept in the 
transmission calculation by using an adaptive parameter 
ω (0<  ω≤1) . Based on that, the transmission calculation 
equation is modified as: 

   𝑡𝑐(x)  = 1 −    
Min

y∈Ω(x)
(ω.

1 − Ir(y)

1 − Ar ,
Ig(y)

Ag ,
 

 
Ib(y)

Ab
), (8) 

 where 𝐴𝑐  =  (𝐴𝑟 , 𝐴𝑔, 𝐴𝑏) is the estimated background 
light. To produce more natural colours, small values of ω 
should be used in depth regions. Based on this concept, 
extracted equal depth map regions are used to assign the 
values for ω. Since intensities of  1 − Ir(y) are proportional to 
the depth of the scene, average intensities of 1 − Ir(y) are used 
to assign the values for ω. Table 2 shows the assignment of 
values for adaptive parameters ω based on the experimental 
results. 

TABLE 2: ADAPTIVE PARAMETER ASSIGNMENT 

Average Intensity of (1 – Ir(y) ) Parameter (ω) 

1 – Ir(y)   ≥ 220 0.85 

220 > 1 – Ir(y)    ≥ 120 0.80 

120 > 1 – Ir(y)    ≥ 100 0.75 

100 > 1 – Ir(y)     ≥ 80 0.70 

1 – Ir(y)     < 80 0.65 

E. Recovering Scene Radiance  

In the final stage of the proposed model-based technique, 
non-degraded image 𝐽 is recovered by using the background 
light 𝐴𝑐 , and transmission  𝑡𝑐 . The non-degraded image 𝐽 is 
obtained as: 

 𝐽𝑐(x)  =   
𝐼c(x) - 𝐴c 

𝑀𝑎𝑥( 𝑡𝑐(x),   𝑡0)
 +  𝐴c, 𝑐 ∈ {𝑟, 𝑔, 𝑏} (9) 

 Where 𝑡0 is a parameter and set experimentally.  

F. White Balance 

In the proposed approach, a set of model-free image 
enhancement techniques are used to improve the colour of an 
underwater image. As an initial technique, a white balancing 
algorithm is used to remove the colour cast in underwater 
images. We have followed the white balancing technique of 
[12] without any modification. Based on that, enhanced red 

(  Ir′ (𝑥)) and blue (  Ib′ (𝑥)) colour channel intensities are 
calculated for a given input image 𝐼(𝑥) as: 

  Ir′ (𝑥) =   Ir(𝑥) + 𝛼. (𝐼𝑔  − 𝐼𝑟). (1
−    Ir(𝑥).   Ig(𝑥), 

(10) 
  Ib′ (𝑥) =   Ib(𝑥) + 𝛼. (𝐼𝑔  − 𝐼𝑏). (1

−    Ib(𝑥).   Ig(𝑥), 

Where  𝐼𝑟 , 𝐼𝑔 , and 𝐼𝑏 are the mean values of red, green, 

blue colours, respectively. 𝛼 is a parameter and changed as per 
the illumination conditions.  

G. Gamma Correction and Image Sharpening 

Although, white balancing is used to recover the natural 
colours, it is not enough to recover the details near edges. 
Therefore, Gamma correction and image sharpening 
techniques are used in the next step of the proposed model-
free technique. The intensity of the white balanced image is 
changed using the standard Gamma correction equation with 
Γ=2. In the final step of the model-free technique, edges of the 
image are sharpened by subtracting the input image from the 
blurred image.   

H. Fusion Strategy 

 In the final stage of the proposed methodology, outputs of 
model-based and model-free techniques are fused to obtain a 
high-quality enhanced image. The following weight map is 
used to fuse the model-based (𝐽𝑚𝑏)  and model-free (𝐽𝑚𝑓) 

outputs.  

   𝐽𝐹𝑖𝑛𝑎𝑙 =  
𝐽𝑚𝑏  +  𝛿 𝐽𝑚𝑓

1 +  𝛿
.  (11) 

where 𝐽𝐹𝑖𝑛𝑎𝑙  is the fused output, and 𝛿 is a positive scalar 
and which is set experimentally.  As shown in Fig.5, the 
proposed approach recover details from model-based 
technique (Fig.5(b)), and natural colours from model-free 
technique (Fig.5(c)). As shown in Fig.5(d),   the proposed 
approach produces a better quality enhanced image by fusing 
model-based and model-free outputs. 

IV. EXPERIMENTAL SETUP 

A. Implementation details 

In the proposed approach, all underwater and 
corresponding reference images are resized to 500 × 500. 
Matlab is used in the implementation. The values of 𝑡0 
(Equation 9) and 𝛿  (Equation 11) are set as 0.1 and 4, 
respectively. An Intel i7 processor is used to measure the 
performance of the proposed method. The results and code of 
this study are publicly available at 
(https://github.com/RPRO5/underwater_image_enhancement
). 

B. Datasets 

Until recently, underwater image enhancement 
approaches are evaluated using synthetic images due to the 
unavailability of the benchmark datasets. However, in the last 
two years, three benchmark datasets are constructed and 
publicly available for the evaluation. Table 3 provides the 
information of these benchmark datasets.  

TABLE 3: DETAILS OF THE BENCHMARK DATASETS 

Details 
Benchmark Datasets 

UIEB[28] OceanDark[29] U45[30] 

No. of images 890 183 45 

Resolution 640 × 480 1280 × 720 256 × 256 

Reference Image Yes No No 

 Among these three datasets, UIEB has reference (non-
degraded) images for each underwater images. Performance 
of the proposed approach is evaluated on these three 
benchmarks and then compared with the similar approaches.  (a) (b) (c) (d) 

Fig. 5: Illustration of the proposed fusion strategy. (a) Input image. (b) 

Output of model-based technique (c) Output of model-free technique 

(d) Fused image. 



C. Evaluation Criteria  

 Generally, reference-based and non-reference based metrics 
are used to measure the performance of underwater image 
enhancement approaches. Reference-based metrics are used 
whenever non-degraded reference images are available. In this 
study, Structural Similarity Index (SSIM), Peak Signal-To-
Noise Ratio (PSNR), and Mean-Squared Error (MSE) are 
used as the referenced-based metrics. A larger SSIM value 
represents that the output image is much similar to the 
reference image in terms of luminance, contrast, and structure. 
A higher PSNR and lower MSE represents that output image 
intensities are close to the reference image intensities for all 
three colour channels.  

We have used Entropy, Blind/Referenceless Image Spatial 
Quality Evaluator (BRISQUE), and Natural Image Quality 
Evaluator (NIQE) the non-reference metrics. Entropy gives a 
high score for a high contrast and uniform image. NIQE is 
developed based on the human vision understanding of high-
contrast areas of an image. A low NIQE score represents a 
better quality image.   BRISQUE measures the naturalness in 
images and gives high scores for a worse image.   

D. Testing Results 

The enhancement performance of the proposed approach 
is evaluated on UIEB, OceanDark, and U45 benchmark 
datasets. We compared the performance with the model-free 

approaches of Fu et al.,[11], Sophiya and Gisha [24], Ancuti 
et al.,[23], Fu et al.,[13], Ghani et al.,[32], and Ancuti et 
al.,[12]. Further, we compared the model-based approaches of 
Galdran et al.,[19], Berman et al.,[31], Berman et al.,[7], Lee 
et al.,[6], Marques and Albu [5], Sathya et al.,[17], Yao and 
Xiang [8], and Chiang et al.,[33]. We obtained source codes 
of these approaches and evaluated their performances.  

Table 4 Compares the enhancement of the proposed 
approach with other state-of-the-art approaches in UIEB, 
OceanDark, and U45 benchmark datasets. Based on the 
experimental results, our approach outperforms other 
approaches in all three benchmark datasets. Fig.6 shows the 
qualitative results of the proposed method with other four top-
performing approaches. Based on that, it can be obviously 
seen that the proposed method recovers more details with 
natural colours.  

TABLE 5: COMPARISON OF PROPOSED MODEL-BASED AND MODEL-FREE 

ALGORITHMS 

Technique PSNR MSE SSIM 

Model-based 22.7658 1.6566 0.8473 

Model-free 20.3384 2.6828 0.8979 

Fused final output 24.5543 1.1637 0.9206 

Since the proposed approach combines model-based and 
model-free algorithms, a comparison study is conducted to 
measure the individual performances of these algorithms. 
Their performances are evaluated on the UIEB dataset and 

Approach 
UIEB Dataset OceanDark Dataset U45 Dataset 

PSNR ↑ MSE ↓ SSIM ↑ Entropy ↑ NIQE ↓ BRISQUE↓ Entropy ↑ NIQE ↓ BRISQUE ↓ 

Ours 24.5543 1.1637 0.9206 8.1907 3.0222 20.2435 8.2947 3.5878 34.0426 

[19] 21.4763 3.3787 0.8891 7.5355 3.7833 23.8746 7.5381 5.0018 38.6867 

[11] 15.9502 2.5637 0.8732 6.0495 4.2468 36.9381 7.3292 4.4804 38.0501 

[24] 21.4468 2.8590 0.8706 7.6015 3.8876 23.8911 7.7370 4.8312 35.6663 

[23] 22.6901 2.0411 0.8616 7.6179 3.4594 22.6629 7.7921 5.7651 36.8296 

[31] 21.2501 4.7581 0.8604 7.5871 3.3804 30.2516 7.2964 4.2471 36.7397 

[7] 20.4613 4.4734 0.8550 7.2249 3.9493 22.0136 6.8550 4.5387 37.9451 

[6] 18.6016 3.6163 0.8505 5.2479 4.2074 41.9969 4.5171 4.4529 42.7003 

[5] 20.3286 1.6820 0.8410 6.4201 5.2279 21.4155 7.6032 4.0253 35.3328 

[13] 19.7149 2.7504 0.8314 7.6350 3.6506 32.7700 7.7409 4.5592 40.3740 

[32] 18.5969 1.8117 0.8046 5.9159 3.6554 21.9463 5.8067 5.8540 35.8237 

[12] 19.6032 1.8653 0.7601 7.2851 3.5770 24.9468 6.9338 4.9579 38.5485 

[17] 13.6847 3.5327 0.7127 6.5501 3.8498 24.9626 7.0190 4.8598 37.3342 

[8] 12.7935 4.2941 0.6537 6.8965 3.6826 26.4120 6.8069 5.0135 38.1648 

[33] 13.5977 3.4435 0.5647 6.9267 3.9613 23.4299 6.8779 5.0051 38.1170 

(a) (b) (c) (d) (e) (f) 

Fig. 6:  Qulaitative comparison with state-of-the-art approaches. (a) Input image (b) Galdran et al.,[21] ‘s result. (c)   Fu et al.,[11]’s result, (d) Sophiya and 
Gisha [24]’s result, (e ) Ancuti et al., [23]’s result, and (f) our result.  

TABLE 4: PERFORMANCE COMPARISON ON UIEB, OCEANDARK, AND U45 DATASETS 



detailed in Table 5. Based on the results, it can be observed 
that the proposed model-based technique recovers an image 
with more details since it’s PSNR is high and MSE is low. On 
the other hand, the proposed model-free technique contributes 
to recovering the colour and structure. In summary, fusion of 
proposed model-based and model-free techniques are used to 
recover an image with more details and natural colours.  

V. CONCLUSION   

In this study, we proposed a novel approach for single 
underwater image enhancement. Proposed approach has 
model-based and model-free branches of techniques to 
enhance the image. In the model-based technique, a tentative 
depth map of an underwater image is obtained based on the 
intensities of red channel pixels. In the next step, an image 
segmentation technique is used to identify the equal depth 
regions and then that information is fed to the estimation of 
red channel prior and transmission. In the model-free 
technique, white balancing and gamma correction are used to 
recover the natural colours of the image. Finally, a fusion 
strategy is used to combine the outputs of both techniques.  
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