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Abstract— Quality of outdoor images are often degraded 

under bad weather conditions by the extensive presence of 

suspended particles in the atmosphere such as fog and haze. 

Although, many single image defogging approaches have been 

proposed in the past, their restoration performance is 

considerably low since they fail to consider the image-specific 

cues. To feed that information, we propose a simple and robust 

defogging framework that can estimate the rough depth map of 

a foggy image based on the density of the fog in local regions. 

Obtained depth map information is used to compute the scene-

specific dark channel and transmission. In addition, a histogram 

normalization based post-processing technique is used to 

enhance the restoration. Experimental evaluation performed on 

a benchmark dataset demonstrates the proposed defogging 

framework outperforms state-of-the-art approaches.  

Keywords—Defogging, Dark Channel Prior, Image 

Enhancement 

I. INTRODUCTION 

Poor visibility in outdoor images is one of the key 
challenge in many image understanding and computer vision-
based applications such as traffic monitoring[3], automated 
driving[4], object detection[5], object tracking[6], and aerial 
imagery[7]. Bad weather conditions, such as fog, haze, cloud 
and mist, can significantly reduce the visual quality of outdoor 
images. One of the major reasons for vehicle accidents is poor 
visibility due to the foggy scenes. The objective of the 
defogging frameworks is to increase the visual quality of 
foggy scenes by restoring the details and colour.  

Fog is caused by the extensive presence of water droplets 
in the air due to the bad weather conditions. These water 
droplets scatter the sunlight and light reflected from other 
objects. Due to the scattering, contrast of an outdoor scene will 
be faded, and a whiteness effect will be produced towards the 
observer or camera. These two effects jointly produce a poor-
quality image. It is observed that[8, 9] the amount of fog in an 
image mainly depends on the distance between the scene and 
camera. Therefore, estimating the depth map of a foggy image 
is important for restoring the fog-free image.  

Single image fog removal is a challenging task since fog 
is dependent on the unknown depth. Depth map prediction is 
a challenging problem if the input is only a single image. 
Therefore, many defogging approaches have used multiple 
images and additional information[10, 11] to recover the 
details.  However, without any prior information, single image 
fog removal in real-time is the demand of many real-world 
applications such as automated driving systems and vision-
based surveillance systems.  

Single image fog removal has attracted much research in 
the past [1, 9, 11-19] and following two major strategies. First 
group of approaches[16-18, 20] use a trainable machine 
learning technique to model the depth map of foggy scenes. 
These models recover the foggy image patches by learning the 
knowledge from similar foggy image samples. Although, such 
methods show significant recovering accuracy, their 
computational cost is much expensive and therefore not 
suitable for many real-time applications.  

The second group of frameworks use the simple but 
efficient image enhancement methods, without any machine 
learning techniques. Most of the early works used several 
traditional image enhancement techniques such as median 
filtering[21], white balance correction[15], histogram 
equalization[22],   and edge smoothing[23]. These methods 
are simple, fast, and can be used for real-time applications. 
However, since they apply the enhancement techniques 
without considering the actual factors which causes poor 
quality in foggy images, their performances are limited and 
even may distort the actual colour information. 

Recently, few image enhancement based approaches[2, 
14] showed significant improvement in single image 
defogging by using stronger priors or assumptions. Based on 
the observations of a large number of foggy and fog-free 
images, the ‘dark channel prior’[14] framework has been 
proposed and showed state-of-the-art performance. This 
approach lies on the observation of intensities of few pixels 
are close to zero in at least one colour channel in a local patch 
of a fog-free image. Conversely, this observation does not 
exist in foggy images, and hence the scene can be recovered 
by estimating the thickness of the fog. Although, the ‘dark 
channel prior’ approach is simple and effective, it applies the 
same defogging algorithm on all over the image without 
considering the depth map, which leads to distortion in 
recovered images, especially in dense foggy regions.  

A robust single image fog removal framework should have 
state-of-the-art recovering performance in real-time and 
computationally efficient, since which are the requirements of 
many real-world applications. To achieve this objective, we 
propose a novel defogging framework based on image 
enhancement techniques. It relies on the assumption of rough 
depth map of a foggy image can be obtained by measuring the 
thinness of fog in local patches of an image. In the initial stage, 
the proposed approach measures the thickness of fog and then 
the rough depth map is obtained by using a superpixel-based 
segmentation technique. The captured depth map information 
is then used to feed the scene-specific information in dark 
channel prior algorithm. Proposed approach showed state-of-
the-art performance on a publicly available benchmark 
dataset. 
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II. RELATED WORK 

For several years, a large number of single image 
defogging and dehazing frameworks have been proposed and 
their performance have been evaluated on various 
benchmarks[24, 25]. The most relevant single image 
defogging frameworks and techniques are discussed in this 
section. Comprehensive reviews on these frameworks can be 
found in [9, 26-28].  

The initial defogging frameworks are focused on image 
enhancement without any knowledge of the fog model. 
Apurva et al., [21] used gamma transmission and median 
filtering for defogging. Xu et al., [22] used an adaptive 
histogram equalization technique to recover the colour foggy 
images. Also, several other enhancement methods used in the 
past such as wavelet transform, edge smoothing, and Retinex 
theory. These approaches tried to enhance the brightness and 
contrast features in foggy images. However, their 
performances are limited since they fail to consider why the 
visual quality of foggy image is degraded.  

Recent defogging and dehazing approaches rely on certain 
prior knowledge or observations. Kaiming He et al., [14] 
proposed a novel single image dehazing approach, referred to 
as Dark Channel Prior (DCP). They found that, in most local 
patches of a fog-free image, intensities of few pixels in at least 
one colour channel are very low. With this observation, they 
estimate the thickness of fog, and proposed a restoring 
algorithm. DCP is simple and efficient in most cases.  

DCP approach has drawn a grate attention in the image 
enhancement community and many follow-up approaches 
have been proposed[1, 2, 8, 12, 13, 15, 29, 30]. Few 
approaches[13, 30] improve the recovering performance and 
speed of DCP by introducing a new smoothing filter, called as 
guided filter. Renjie He et al.,[15] proposed a white balance 
correction technique to refine the DCP algorithm. Shunyuan 
Yu et al.,[12] included a multiple transmission layer fusion 
technique to enrich the performance of DCP. Chunlin Chen et 
al.,[29] replaced the global parameters of DCP by a location 
based local parameter settings. Qingsong et al., [2] proposed a 
colour attention prior model based on the inspirations of DCP. 
Jin-Hwan et al.,[1] proposed a contrast enhancement 
technique for defogging in images and video. Anwar and 
Arun[8] proposed a novel post-processing technique in DCP. 

Although DCP based single image defogging approaches 
are simple and computationally efficient, there is still a 
considerable recovering performance gap observed when 
these approaches are evaluated on benchmark datasets. Our 
objective is to reduce this performance gap by including the 
depth map information in DCP algorithm without using any 
machine learning model as they are computationally 
expensive.  

III. BACKGROUND 

A. Atmospheric Scattering Model 

In computer vision and graphics, the formation of fog or 
haze in an image is described by an atmospheric scattering 
model[31]. In this model, fog is treated as a combination of 
two components: Direct attenuation and Airlight.  Attenuation 
diminishes the contrast and Airlight adds a whiteness effect in 
a foggy image. Based on that, the formation of fog is 
expressed as:  

 I(x) =  IAttenuation(x)+ IAirlight(x)  (1) 

Where x is the location of a pixel within the image, I is the 
observed foggy image, and 𝐼𝐴𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛  and 𝐼𝐴𝑖𝑟𝑙𝑖𝑔ℎ𝑡  are the 

attenuation and airlight on that location, respectively. The 
attenuation describes the scene radiance (i.e. the fog-free 
image that we want to recover) and medium transmission. 
Airlight is the scattered light that leads to the shift of the scene 
colours. The both components can be expressed by the 
following equations: 

 IAttenuation(x)  =  J(x) t(x), (2) 

 IAirlight(x)   =  A (1- t(x)),  (3) 

Where J is the scene radiance, A is the atmospheric light, 
and t is the transmission parameter, which indicates the part of 
the light that penetrates through the fog. The transmission 
parameter t depends on the distance between the scene and 
camera, and it can be described as: 

 t(x)  =   e−βd(x) , (4) 

Where 𝛽 is the scattering coefficient and 𝑑 is the depth of 
the scene. The objective of any defogging framework is to 
obtain J, A and t from I. To obtain these values, several 
assumptions and prior knowledge are utilised in many single 
image defogging frameworks.  

B. Dark Channel Prior 

In this section, the Dark Channel Prior (DCP)[14] 
algorithm is reviewed, since we make use of it as the baseline 
defogging framework. DCP is simple and computationally 
efficient, and therefore many of the recent defogging and 
dehazing frameworks make use of it as their baseline.  

DCP works only for colour images and is built based on 
the concept of a dark channel. In an image, its dark channel 

Jdark can be defined as:   

  Jdark(x) =  
Min

y∈Ω(x)
 (

Min

c∈{r ,g, b}
 Jc(y)) , (5) 

Where Ω (x) is a local image patch centred at x and Jc is 
the colour channel of J. The authors of DCP assume that the 
transmission is constant in the local patch Ω (x).  Based on 
their observation on a large number of fog-free images, the 
intensity of dark channel is tends to be zero, except the sky 
regions as:  

 Jdark →  0 , (6) 

This observation is called as dark channel prior. Based on 
that, the transmission can be derived as: 

 t(x)  =   1 −  𝜔
Min

y∈Ω(x)
 (

Min

c

𝐼c(y)

𝐴𝑐
), (7) 

Where ω (0 ≤ ω ≤ 1) is the defogging parameter that will 
control the degree of fog removal. The DCP algorithm 
assumes that the brightest pixel in I is approximately equals to 
A. Based on these assumptions and equations, the scene 
radiance J can be described as: 

 J(x) =  
I(x) - A

max(t(x), 0.1)
 + A, (8) 

The performance of DCP defogging framework is mainly 
depends on its key parameters: Patch size (Ω) and defogging 
parameter ω. The dark channel concept becomes stronger for 
larger values of Ω because possibility of a large patch contains 
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a dark pixel is increased. On the other side, DCP built on the 
assumption of transmission is consent in a patch, and hence 
large Ω produces halos in near depth scenes. Therefore, based 
on the experiments, patch size Ω is fixed to 15 ×15 in DCP 
and other follow-up approaches. We have observed that Ω 
should be as much as large in constant transmission regions to 
get the better dark channel. Based on the equation (4), amount 
of transmission is same in equal depth regions. Therefore, 
patch size Ω should be fixed locally, based on the depth map 
of a foggy image.  

The other key parameter ω is used to control the degree of 
fog removal in the DCP approach. The value of ω is fixed to 
0.95 in DCP and other approaches, since if the entire fog is 
removed from a foggy image, the recovered image may seem 
unnatural. However, based on our observations, ω should be 
large in dense foggy regions and be small thin foggy regions. 
Otherwise, as shown in Fig.1, it causes unnatural effect in the 
recovered image. Since the density of the fog depends on the 
depth map, value of ω should be fixed locally, based on the 
depth map of a foggy image.  

We have also notice that DCP and follow-up approaches 
show poor performance in brighter regions because they apply 
fixed values for the both key parameters. To overcome the 
limitations of DCP and other dark channel prior based 
approaches, we propose a novel single image defogging 
framework by capturing and including the scene-specific 
information.   

IV. METHODOLOGY 

The key objective of the proposed framework is to include 
the scene-specific knowledge to the dark channel prior based 
defogging to increase the restoring performance. In the initial 
stage, the proposed approach estimates the rough depth map 
of the foggy image based on the density of the fog in local 

regions. Then the obtained rough depth map is used to 
calculate the scene-specific patch sizes (Ω) and defogging 
parameters (ω) for corresponding individual local regions. 
Based on the local values of these parameters, scene-specific 
dark channel is obtained and then the scene-specific adaptive 
transmission is estimated. In the post-processing, we use a 
colour balancing mechanism to enhance the quality of 
recovered image. The overview of the proposed framework is 
shown in Fig.2. The details of each steps are explained in the 
following subsections.  

A. Depth Map Estimation 

Estimating the depth or geometry of a scene from a single 
image is one of the major problems in several computer vision 
based applications. Without a machine learning technique, 
propose a depth estimation model is a challenging task, since 
the appearance information is insufficient to resolve depth 
ambiguities. However, machine learning based depth 
estimation techniques are computationally expensive and 
hence not suitable for real-time single image fog removal. In 
this background, we focused to develop a simple but efficient 
depth map estimation technique based on some prior 
assumptions and observations in foggy images. The proposed 
technique identifies the distinct depth regions in a foggy image 
and then that knowledge is used to improve recovering 
performance of the proposed defogging framework.  

We have observed that density of fog is peak in depth 
scenes and low in close objects. We have also notice (Fig.3 
(a)) that the intensity of dark channel gives the rough 
approximation of the thickness of the fog. Based on these 
observations, we assume that rough depth map of a foggy 
image can be estimated by the intensity of the dark channel.   

In the proposed depth map estimation technique, a 3 × 3 
patch is used to obtain the dark channel of the foggy image 
and hence the intensity of obtained dark channel is considered 
as the density of the fog in that image. We have used an image 
segmentation technique to identify and group equal depth 
pixels in the obtained dark channel.    

Superpixel based image segmentation algorithms group 
the adjacent pixels based on their intensity values and then 
identify the distinct regions. Since superpixel based 
segmentation algorithms are simple, fast, and efficient, we 
have utilised it to identify the distinct depth regions. We have 
followed the 2D superpixel based segmentation algorithm of 
Achanta et al.,[32] to obtain the distinct depth map regions. 
Fig.3. visualizes the proposed depth map estimation technique 
in a foggy image.

(a) (b) 

Fig.1. DCP approach [12] shows poor performance (unnatural effect) in 

brighter regions. (a) Foggy image. (b) Recovered image. 
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Fig.2. Flow diagram of the proposed framework. It feeds the scene-specific information into the dark channel prior based algorithm by estimating the rough 

depth map at the initial stage, and then used it to find the scene-specific dark channel and estimate the adaptive transmission. 
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At the initial stage of the proposed approach, depth distinct 
regions are identified and then that information is used to feed 
the scene-specific knowledge in defogging. 

B. Scene-Specific Dark Channel 

Defogging performance of DCP and all follow-up 
approaches are mainly depending on the dark channel 
estimation. In all these approaches, dark channel of a foggy 
image is computed (based on equation 5) by assuming the 
transmission is constant within a local patch. All approaches 
are used a 15×15 patch (Ω) without considering any depth 
information of the image.  

It is observed that dense fog regions are brighter than thin 
fog regions due to the additive airlight. We have also notice 
that probability of a dark pixel is lower in brighter regions. 
Based on these observation and fact, we have proposed a novel 
technique to get the robust dark channel, which is called as 
scene-specific dark channel. This proposed technique lies on 
the assumption of large patch sizes are desirable in dense fog 
regions since these regions are much brighter and hence the 
probability of a dark pixel is much lower.  

TABLE 1. Average intensities of regions and corresponding patch size. 

 

From the initial step of the proposed framework, depth regions 
were identified. We have used that regions to feed scene-
specific knowledge in dark channel computation. Firstly, 
average intensity (Ii) values of each regions are calculated, and 
then these values are considered as the density of fog in that 
regions. Based on the average intensity values, we have fixed 
the patch size for each region. Large patch size is fixed for 
high density regions while small size is fixed for low density 
regions. The details of this assignment are described in Table 
1.  

In a local region r, its dark channel Jr
dark is calculated as: 

  Jr
dark (x) =  

Min

y∈Ω(x)
 (

Min

c∈{r ,g, b}
 Jc(y)) , (9) 

Where Ω (x) is a local image patch centred at x in region 
r, and Jc  is the colour channel of J. Then, the overall dark 
channel of an image is calculated as: 

   Jdark =  J1
dark ∪ J2

dark  .... ∪ Jn
dark  (10) 

Where n is number of depth regions in that image. The 
proposed technique computes more robust scene-specific dark 
channel than the previous approaches. Figure 4 visualizes the 
effectiveness of our technique by comparing the scene-
specific dark channel with dark channels of DCP and follow-
up approaches. It is clearly seen that proposed scene-specific 
dark channel produces more robust results.  

C. Atmospheric light Estimation 

We have followed the similar procedure of DCP and other 
follow-ups for atmospheric light (A) estimation. This 
estimation process lies on the assumption of the intensity of 
brightest pixel is considered as the A in a foggy image. As the 
first step of estimating A, brightest pixels of the scene-specific 
dark channel are identified. Among them top 0.1% brightest 
pixels are selected, and their average intensity value is 
considered as the A.  Since we have computed scene-specific 
dark channel and used it to estimate A, more robust results are 
obtained.  

D. Scene-Specific Transmission Estimation 

Transmission (t) indicates the amount of light that 
penetrates through the fog. Robust transmission estimation is 
important in all defogging frameworks since it is used to 
recover the fog-free image through equation 8. Based on 
equation 7, the transmission estimation process is mainly 
depending on the defogging parameter ω since it controls the 
degree of fog removal.  

 

In most of the approaches, ω is kept to a fixed value (0.95), 
and hence the fog removal process is conducted with equal 

probability in all the pixels of an image. However, we have 
notice that conducting fog removal with equal probability in 
all pixels will create unnatural effect in recovered image. The 
degree of fog removal should be large in dense fog regions 
and be small in thin fog regions. Based on that concept, we 
have used a novel technique, which is called as scene-specific 
transmission estimate.  

We have utilised the depth map regions, which were 
identified at the initial stage, to fix the density based local ω 

Average Intensity (Ii) Patch Size (Ω) 

Ii   ≥ 240 21 × 21 

240 > Ii   ≥ 140 15 × 15 

140 > Ii    ≥ 90 11 × 11 

Ii    < 90 5 × 5 

Average Intensity (Ii) defogging parameter (ω) 

Ii   ≥ 230 0.95 

230 > Ii   ≥ 140 0.9 

140 > Ii    ≥ 100 0.8 

100 > Ii    ≥ 80 0.7 

Ii    < 80 0.6 

(a) (b) Fig.4. Effectiveness of the proposed scene-specific dark channel. (a) Dark 

channel of DCP [12] approach. (b) Proposed scene-specific dark channel. 

(b) (a) 
Fig.3. Depth estimation in foggy image. (a) density of fog based on the 

dark channel. (b) Identified equal depth regions by using the superpixel 

based segmentation. Boundaries of the regions are shown in red colour. 

TABLE 2: Average intensities of regions and corresponding ω 
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values. The average intensity of each depth regions is 
computed and then corresponding local ω values are assigned. 
High values are assigned for high density fog regions and low 
values are assigned for low density regions. The details of this 
process are described in Table 2. 

Based on the corresponding local defogging parameter, the 
scene-specific transmission calculation becomes: 

 t(x)  =   1 −  ω𝑟
Min

y∈Ω(x)
 (

Min

c

𝐼c(y)

𝐴𝑐
), (11) 

Where ω𝑟 is the region specific defogging parameter. The 
proposed technique removes more fog in high density regions 
while keeps few amounts of fog in thin density regions. 
Therefore, the recovered fog-free image becomes more 
natural than the previous approaches.  

E. Recovering Scene Radiance 

Similar to other approaches, scene radiance J is recovered 
by using the equation 8 in the proposed framework. The 
estimated scene-specific transmission is used to recover the 
fog-free image. 

F. Post-Processing 

We have used a post-processing technique to enhance the 
quality of the recovered image. Colour of the recovered fog-
free image is improved by the histogram normalization 
technique. Figure 5 visualizes the proposed post-processing 
technique. It is clearly seen that the post-processing adjusts the 

colours and hence the recovered images becomes more 
realistic and natural. 

V. EXPERIMENTS 

A. Implementation details and Evalution Protocols 

In the proposed work, all the ground truth and foggy 
images are resized to 500 × 500.  The proposed approach is 
implemented in MATLAB. All comparisons are conducted on 
an Intel core i7-8550U CPU. The code and the results of this 
work are available at 
https://github.com/Kokul1984/Scene_Specific_Dark_Channel. 

Mean-Squared Error (MSE), Peak Signal-To-Noise Ratio 
(PSNR) and Structural Similarity Index (SSIM) are the well-
known metrices for evaluating the performance of defogging 
and dehazing frameworks. MSE calculates the average of the 
squares of the errors between ground truth (fog-free) image 
(G) and recovered image (F) by the following equation:  

 MSE =  
1

M × N
 ∑ ∑ [ F(i, j) - G(i, j) ]2

N

j=1

M

i=1

, (12) 

Where M  and N  are the width and height of the image, 
respectively. PSNR measures the peak error as follow: 

 PSNR =  10 𝑙𝑜𝑔10  (
𝑀𝐴𝑋𝐺

2

𝑀𝑆𝐸
). (13) 

Where MAXG is the maximum pixel value in the ground 
truth image. Since PSNR is depending on MSE, both metrices 
are producing similar results. The SSIM [33] index is used to 
measure the quality of an image based on a reference image. 
A high SSIM index represents high similarity between ground 
truth image and recovered fog-free image. In this evaluation, 
we have selected PSNR and SSIM to measure the distance 
error and the similarity between the ground truth image and 
the recovered image. 

B. Dataset 

In general, foggy images and corresponding ground truth 
(fog-free) images are important to evaluate the performance 
of defogging frameworks. However, it is difficult to obtain 
such kind of pairs of images and hence synthetic images are 
used to evaluate the recovering performance in many 
approaches. In this background, we have used the Foggy Road 
Image DAtaset (FRIDA) to evaluate the performance of the 
proposed approach and then compared it with state-of-the-art 
approaches.  

There are 72 synthetic foggy images in the FRIDA 
benchmark, and they are created by adding different types of 
fogs on 18 ground truth images. Each image has the size of 
640 × 480.   

C. Testing results 

The performance of the proposed defogging framework is 
compared with state-of-the-art single image defogging 
approaches on FRIDA benchmark. We compare the proposed 
approach with the works of Kim et al. [1], Pang et al. [13], He 
et al. [15], Kaiming et al. [14], Zhu et al.  [2], He et al.  [30] 
and Yu et al.   [12]. In this comparison study, source codes of 
all approaches are obtained and evaluated on FRIDA 
benchmark with same parameter settings.  

 

Table 3 compares the performance of proposed single image 
defogging framework with other state-of-the-art approaches. 
It is clearly seen that our framework produces excellent 
defogging performance for both evaluation metrices.  Figure 
6 compares the qualitative results with well-performing 
approaches on few real-world images.  Based on the figure, 
we can observe that proposed approach successfully removes 
the fog and produces more realistic and natural results. 

Approach PSNR SSIM 

Ours 14.5531 0.8225 

Kim et al. [1] 14.3187 0.8043 

Zhu et al.  [2] 13.9140 0.8051 

Kaiming et al. [14] 12.9382 0.6192 

He et al.  [30] 12.7739 0.7182 

He et al. [15] 12.4027 0.4273 

Pang et al. [13] 12.1701 0.7921 

Yu et al.   [12] 11.0105 0.3758 

(a) (b) 

Fig.5. Histogram normalization based post-processing.  (a) recovered fog-

free image. (b) Enhanced post-processed image. TABLE-3 Performance comparison on FRIDA benchmark 
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VI. CONCLUSION  

In this paper, we presented an image processing based 
simple but efficient framework for single image defogging. 
Based on the density of fog in local regions, we have obtained 
the rough depth map of a foggy image, and then used it to feed 
the scene-specific knowledge to defogging. In addition, we 
have proposed a scene-specific dark channel estimation 
technique and a transmission estimation technique, which are 
used to improve the recovering performance of the approach. 
The proposed defogging method shows state-of-the-art 
recovering performance on FRIDA benchmark dataset.   
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Fig.6. Comparison with other methods. (a) Input foggy image. (b) Kim [1]’s result. (c) Kaiming[14]’s result. (d) Zhu [2]’s results. (e) He [15]’s result. (f) 
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